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Abstract

Using a panel of 74 countries that spans nearly 60 years, this paper investigates the

effects of climate change on global soybean yields. In alignment with previous research, we

find a global non-linear relationship between growing season average temperature and yield

growth—a parabola that minimizes around 24.9◦C . It indicates that effects of warming

change from being beneficial to harmful, and reach to the most damaging at the optimum

temperature; however, beyond the optimum, warming becomes less detrimental probably

due to adaption of local crop variety to heat at countries that have been persistently hot.

However, by incorporating regional dummies to our empirical model, we find significant

heterogeneity in different regions. For example, in contrary to the global response function

that opens upwards, the opposite direction, a downward open response function, is found

for Southeast Asia, such that crop yield growth maximizes at 24.23◦C .

We also demonstrate precipitation has non-linear effects on soybean yields. In contrast

to the large heterogeneity in temperature effects, the regional response functions for

precipitation are more consistent over the world. Except for regions not sensitive to

precipitation changes, areas such as Southeast Asia, Eastern Europe & Central Asia, and

Sub-Saharan Africa all show a downward open parabolic response curve to precipitation.

In addition to temperature and precipitation, we highlight the importance of diurnal

temperature range (dtr) in assessing climate change impacts on crop yields. We find

dtr is a statistically significant factor to soybean yields—an additional 1◦C dtr will slow

global soybean yield growth by 4.1 percentage points.

Corresponding author: menghan.yuan@nuffield.ox.ac.uk
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1 Introduction

The Sixth Assessment Report of IPCC (Intergovernmental Panel on Climate Change) has

reported global surface temperature in the first two decades of the 21st century (2001–2020)has

increased by 0.99◦C than 1850–1900, with each of the past four decades being successively

warmer than any decade that preceded it (IPCC AR6, 2021). It also reported increased average

precipitation over land since 1950. Growing evidence demonstrates climate change has profound

impacts on crop production. Understanding changes in crop production induced by climate

change is of essential importance to food security, agricultural adaptation, and social welfare, as

it characterizes historical patterns of crop responses to climate change, and provides a guidance

to identify adaptation opportunities and potential agricultural consequences of future climate

change.

Attempts to measure impacts of climate change on agriculture have evolved a lot since

the early 1960s and broadly fall into two major approaches: process-based models, which

simulate the key processes in crop growing and yield formation in experimental labs; and

statistical models, which estimate the sensitivity of crop yields to climate variables based on

regression analysis on observational data. Process-based crop simulation models parameterize

soil, weather, and crop management in a function of the soil-plant-atmosphere biophysical

dynamics. The simulation models are typically used for applications in on-farm and precision

management, and are increasingly used in assessments of the short-term impact of climate

variability (see e.g., Lobell and Asseng, 2017; Lobell and M. B. Burke, 2010; Rosenzweig et al.,

2013). On the other hand, statistical models empirically estimate the relationship between

crop yields and weather variables. Results from the two approaches are compared to each

other in studies, suggesting broadly consistency (Liu et al., 2016; Lobell and M. B. Burke, 2010;

Lobell, M. B. Burke, et al., 2008) despite of certain divergence due to scenario settings and

differences in the analytical approaches. Although both approaches can provide useful crop

yield predictions, process-based models require more resources in calculation and calibration,

moreover, they are limited to only a few varieties of crops, mostly maize, wheat, and rice, which

limits their application beyond the major grains.

The statistical approach uses a so-called a response function to describe the effects of climate

change on economic growth. Substantial debates about the response function exist over (i) the

linearity of the relationship, (2) heterogeneity in countries’ responses to climate change over the

world. Dell, Jones, and Olken (2012), Liu et al. (2016), and Lobell, M. B. Burke, et al. (2008)

used a linear specification of temperature and precipitation, which assumes monotonically

effects of climate change. Based on a linear model, Dell, Jones, and Olken (2012) reported
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significant difference in responses between rich and poor countries. Rich countries are not

sensitive to temperature change, yet are negative affected by more precipitation. On the other

hand, poor countries are only sensitive to temperature variability; a 1◦C rise in temperature

will lead to a decrease of annual growth rate of economies by 1.35%. On the contrary, M.

Burke, Hsiang, and Miguel (2015) used a non-linear relationship, more specifically, a quadratic

specification of weather variables, in the response function. They found a downward open

curve response function of temperature, such that economic growth maximizes at 13.06◦C .

They agreed that rich countries will be less affected by a global warming as compared to

poor countries; however, they claimed the difference in the responses is not because they

have different sensitivities to climate change, but rather due to their various initial levels of

temperature on the response curve. Specifically, poor countries are hurt simply because they

have annual average temperatures greater than the optimal value, and rich countries are less

hurt, or even benefit, from a global warming because they are colder and have annual average

temperatures smaller than the optimal value. Burke et al. further reported non-significance of

precipitation to GDP growth.

Response difference is also found among regions from meta-analyses, which consolidate

regional estimates from numerous references and based on which generate bootstrapped

estimates of responses for individual regions/countries see e.g., Carleton and Hsiang, 2016; Liu

et al., 2016; Lobell, M. B. Burke, et al., 2008; Zhao et al., 2017. Nevertheless, it remains unclear

whether the difference in responses is due to different sensitivities of response functions, or

just because regions have different starting points on the response curve. To investigate the

attribution of the regional heterogeneity, we interact climate variables with regional dummy

variables and a rich/poor dummy. This specification explicitly allows for differing sensitivities

to climate change based on region and rich/poor categories.

Temperature is deemed to be the dominant factor in the response functions in literature (see

e.g., M. Burke, Hsiang, and Miguel, 2015; Diffenbaugh and M. Burke, 2019; Zhao et al., 2017).

Understanding crop responses to temperature and the magnitude of regional temperature

changes are the two most important needs for reducing uncertainty in predicting future crop

yields (Lobell, M. B. Burke, et al., 2008). Previous studies of response functions have primarily

focused on the impacts of growing season average temperature, with few work ever quantifying

crop yield responses to extreme temperatures. However, extremes are important to consider

for that extreme temperatures occurring at crucial stages of crop formation can drastically

reduce the final production (Zhang et al., 2014). Response functions could provide significantly

different predictions when using extreme temperature proxies, if a crop is substantially more

sensitive to one specific extreme temperature index (Lobell and Field, 2007). For example, the
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predictions using extreme temperature indices are more than 20% lower than that of using

average temperature for wheat (Lobell and Field, 2007).

Given the increasing frequency of extreme temperatures, the risks of crop yields damaged

by extreme temperature stresses have been increasingly of concern. In order to take into

account the effects of temperature extremes, we investigate a novel temperature index, diurnal

temperature change (d t r = tmax− tmin, which measures the difference between the temperature

extremes). Diurnal temperature reflects the magnitude of temperature stresses. A large diurnal

temperature suggests the occurrence of a heat stress (increase of tmax) or a cold stress (decrease

of tmin). Our results further show that the diurnal temperature change is indeed a significant

factor to crop yields.

Based on a country-year panel consisting of 74 countries over the period 1963-2018, we

investigate how soybean yields have been affected by climate change and focus on the response

heterogeneity among regions. The remainder of the paper is organized as follows. Section 2

describes the data and model applied in our estimation strategy. Section 3 provides descriptive

statistics of the data and summarizes regression results. Section 4 discusses the results.

2 Data and Method

2.1 Data

A. The CRU-TS climate dataset

Our analysis uses historical temperature temperature, precipitation, and diurnal temperature

range (which is the difference between the maximum temperature and the minimum

temperature) as controls in our empirical estimation of climate change effects. Climate Research

Unit Time Series (CRU-TS V4.0, Harris et al., 2020) provides monthly time series of the

climate variables from 1901 to 2019. Data is available at 0.5 × 0.5 degree resolution for

all global land areas excluding Antarctica, and can be downloaded from the CRU website

https://crudata.uea.ac.uk/cru/data/hrg/.

B. Growing season and harvest area datasets

Global growing season calendar is available from Sacks et al. (2010). The dataset contains

gridded maps of crop planting and harvesting dates for a large variety of crops at 0.5×0.5 degree
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resolution. We select the monthly climate variables within the growing season of soybeans

and calculate the averages of them. The resulting data are annual growing season averages of

climate variables.

Monfreda, Ramankutty, and Foley (2008) provides cropland coverage data. For each 0.5◦

grid, a fraction ranging from 0 to 1 of cropland to the whole land is given. Larger fraction

means a greater ratio of cropland usage. We use crop fraction data as a mask to gridded climate

observations, retaining grids with nonzero values of crop fraction and aggregating them into

country level data.

C. Economic data

We use soybeans as an example to illustrate climate change effects on crop yields. Annual

country level soybean yields can be obtained from the Food and Agriculture Organization of

the United Nations (FAOSTAT, http://www.fao.org/faostat/en/#data/QC). We also consider

regional and wealth heterogeneity in our analysis. We here use regional categories in M. Burke,

Hsiang, and Miguel (2015) which classify countries worldwide into six categories, primarily

based on their geographical locations and economic development. Figure 1 shows the regional

classification of the 74 soybean-producing countries applied in this study. In principle, countries

clustering geographically belong to the same classification, except for WEOFF (Western Europe

and offshore), which breaks geographical boundaries and covers most of the world’s developed

countries—Western Europe, Canada, the US, and Australia.

Fig. 1 Regional Categories for soybean-producing countries. Countries with the same color belong to
the same regional category, while white countries mean they do not have soybean produce. Refer to
Table 2 for the definition of the region names.
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2.2 Empirical Framework

Our empirical framework follows the derivation from M. Burke, Hsiang, and Miguel (2015),

with the following extensions: i) exploring the effects of one new climate variable—diurnal

temperature range; ii) allowing parameter heterogeneity in regional responses. Specifically, we

consider the following model to estimate climate impacts on crop yields in country i year t

∆ log yi,t = fT (Ti,t) + fP(Pi,t) + fDT (DTi,t) + θ1,i t + θ2,i t
2 +µi + νt + εi,t (1)

where yi,t are soybean yields, fT (.), fp(.) and fDT (.) are functions of growing season average

monthly temperature, precipitation, and diurnal temperature range, respectively. µi are the

country-fixed effects, vt are year-fixed effects, and θ1,i t + θ2,i t
2 are country-specific quadratic

time trends. The response is the first difference of the natural log of soybean yields, which can

be interpreted as an approximation of annual percentage growth rates. The climate effects on

crop yields are captured by the first three terms in Eqn. (1). The quadratic country-specific

time trends (θ1,i t +θ2,i t
2) permit soybean yields to evolve nonlinearly over time, accounting for

changes driven by slow changing factors within a country, such as economic and technological

advancements, agricultural infrastructure and management shifting, crop adaptation. All time-

invariant factors that determine countries’ historical average yield growth rates, such as history,

culture, and demography, are accounted for in the country-fixed effects (µi). Time-varying

global shocks such as volcanic eruptions and wild fires, are captured by the time-fixed effects

(νt).

In the current study, we consider several specifications for functions of climate variables.

We use a baseline regression that assumes all countries have the same response function, in

particular, we use a quadratic specification for fT (.) and fp(.), and a linear specification for

fDT (.). We call this a global heterogeneous specification that takes the following form

fT (Ti,t) = β1Ti,t + β2T 2
i,t

fP(Ti,t) = γ1Pi,t + γ2P2
i,t

fDT (DTi,t) = λ1DTi,t

(2)

The coefficient of diurnal temperature range, λ1, represents the difference of the responses

of crop yields to changes in maximum and minimum temperature. Since

DTi,t = Tmax ,i,t − Tmin,i,t

∆DTi,t =∆Tmax ,i,t −∆Tmin,i,t

(3)
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an increase of diurnal temperature range (∆DTi,t > 0) suggests the increase of Tmax is bigger

than that of Tmin (both Tmax and Tmin indicate positive average trends for regions and the global,

refer to Table 4), i.e., ∆Tmax ,i,t >∆Tmin,i,t , which will be the case when heat stresses happen.

λ1 can then be interpreted as the difference of sensitivity to Tmax and Tmin, or λ1 = λmax −λmin,

where λmax and λmin represent the sensitivity to Tmax and Tmin, respectively. Given that the

temperature indices are negatively correlated to crop yields, a positive λ1 indicates the crop is

more sensitive to Tmin (|Tmin| > |Tmax |), and a negative λ1 suggests larger sensitivity to Tmax

(|Tmin|< |Tmax |).

We also examine two types of heterogeneity in our specifications: regional heterogeneity and

wealth heterogeneity. In the regional heterogeneity specification, we interact the temperature

and precipitation variables with regional dummy indicators identifying each of the regional

category. More specifically, we have

fT (Ti,t) = β1Ti t + β2T 2
i,t +Σ

7
j=3β j × Ti,t × Di, j +Σ

12
j=8β j × T 2

i,t × Di, j

fP(Ti,t) = γ1Pi t + γ2P2
i,t +Σ

7
j=3γ j × Pi,t × Di, j +Σ

12
j=8γ j × P2

i,t × Di, j

(4)

where Di, j = 1 if country i is within region j; otherwise, Di, j = 0. There are all together six

regions, so if Di, j = 0 for all j = 1, . . . , 5, it indicates country i is within the reference region

level.

To test wealth heterogeneity, we interact the temperature and precipitation variables with

an indicator for whether a country’s purchasing-power-parity adjusted (PPP) GDP per captipa is

above or below the median level across countries. That is, we have the following specification

fT (Ti,t) = β1Ti t + β2T 2
i,t + β3(Ti,t × Di,t) + β4(T

2
i,t × Di,t)

fP(Ti,t) = γ1Pi t + γ2P2
i,t + γ3(Pi,t × Di,t) + γ4(P

2
i,t × Di,t)

(5)

where Di,t = 1 for country i with below-median income level in year t.

3 Results

3.1 Descriptive Statistics

Table 2 summarizes the number of observations per region in our consolidated dataset.

We focus on a panel of 74 countries over the period 1963-2018 (56 years), with all together

2844 country-year observations. Soybean-producing countries are concentrated the most in
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Southeast Asia (SEAS) and Latin America (LAC). Table 3 shows the number of poor and rich

countries in each region. We see that WEOFF countries are all defined as rich, while SSAF

consists of only 1 rich country and the other 12 poor countries. Other regions are comprised of

a mix of poor and rich countries.

Update data description accordingly. Deleted 7 countries due to data quality control, e.g.,

problematic dtr data, at least 10 years of yield data. Now the dataset contains altogether

67 countries.

A stationary panel is essential to ensure the absence of permanent effects of shocks and

moreover, a standard limiting distribution of parameter inference. We therefore carried out a

range of unit root tests, including augmented Dickey–Fuller (ADF), Phillips–Perron (PP), and

Elliott, Rothenberg and Stock (ERS) tests. The PP unit root test differs from the ADF test by the

correction for any serial correlation and heteroskedasticity in the errors. Yet, both unit root

tests suffer from the lack of power in distinguishing the unit root null from highly persistent

stationary alternatives. The ERS test introduces modifications of the PP test and proposes a more

powerful unit root test. Table 1 summarizes the results of the unit root tests for country time

series. We see that temperature is mostly trend stationary; precipitation, diurnal temperature

and soybean yields are trend stationary. Furthermore, panel unit root tests–Im, Pesaran and

Shin (IPS) and cross sectional IPS tests both demonstrate a stationary panel.

Table 1 Time series unit root tests for augmented augmented Dickey–Fuller (ADF), Phillips–Perron (PP),
and Elliott, Rothenberg and Stock (ERS) test. The drift regression model is given by yt = c +ρ yt−1 + εt ,
and the trend model given by yt = c +δt +ρ yt−1 + εt . The numbers reports the number of countries in
each category.

Variable Result
ADF PP ERS

Drift Trend Drift Trend Drift Trend

Temperature
Non-stationary 43 3 13 0 34 5
Stationary 24 64 54 67 33 62

Precipitation
Non-stationary 0 2 0 0 1 0
Stationary 67 65 67 67 66 67

Diurnal temperature
Non-stationary 10 9 2 1 7 5
Stationary 57 58 65 66 60 62

Crop yield
Non-stationary 1 5 0 2 3 4
Stationary 66 62 67 65 64 63

Figure 2 shows the average levels and variability of temperature indices and precipitation

over two selected periods, plotted against the percentage change of average soybean yields.

The circle symbols represent the average levels over period one—1980 to 1999. The plus
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Table 2 Dataset description

Regiona Long name Country-year.obs Country.obs Year.obs

EECA Eastern Europe and Central Asia 363 13 56
LAC Latin America 676 18 56
MENA Middle East and North Africa 186 5 56
SEAS Southeast Asia 749 15 56
SSAF Sub-Saharan Africa 475 14 56
WEOFF Western Europe and offshore 395 9 56

Sum 2844 74
a Refer to Figure 1 for detailed area definition.

Table 3 Number of poor and rich countries in each region

Region Wealth Levela No.Country Country membersb

EECA rich 10 BIH, CZE, HRV, HUN, KAZ, MKD, ROU, RUS, SVK,
SVN

poor 3 ALB, UKR, UZB

LAC rich 8 ARG, BRA, CHL, COL, CRI, MEX, PAN, SUR
poor 10 BLZ, BOL, ECU, GTM, GUY, HND, NIC, PER, PRY,

SLV
MENA rich 2 JOR, TUR

poor 3 EGY, IRN, IRQ

SEAS rich 4 CHN, JPN, KOR, THA
poor 11 BGD, IDN, IND, KHM, LAO, LKA, MMR, NPL, PAK,

PHL, VNM
SSAF rich 1 GAB

poor 13 BDI, CMR, GHA, KEN, LBR, MDG, MLI, MWI, NGA,
RWA, TGO, TZA, UGA

WEOFFc rich 9 AUS, AUT, CAN, CHE, DEU, ESP, FRA, ITA, USA
a Defined as poor with below median PPP-adjusted GDP per capita at 2018, otherwise rich.
b Country names are indexed in Alpha-3 codes by ISO 3166 standards.
c All countries in WEOFF are rich, therefore no poor row is shown.

symbols represent the average levels over period two—2000 to 2019. We choose to start

from 1980 instead of 1960 to account for the data availability of crop yields. Recall that we

have an unbalanced dataset; the lengths of yield data history are different among countries.

Choosing the first period to start from 1980 is a result of balancing data completeness with

trend visualization. To account for regional heterogeneity, we color countries based on their

regional categories.

Figure 2 (a)(b) show that all countries get ubiquitously warmer. The largest warming is

found in MENA (1.02◦C) during the past forty years; with the smallest warming observed
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Fig. 2 Changes and variability in growing season temperature indices (panel (a)-(c)) and precipitation
(panel (d)), plotted against percentage change of average soybean yields over two periods. Period
one covers the period 1980-1999; period two covers the period 2000-2018. Average levels of climate
variables are shown for the two periods, respectively (circles for period 1; pluses for period 2), against
percentage change of average soybean yields over the two periods. Note that climate variables are
averages over the growing season of soybeans for cropped areas in each country. Countries are colored
based on regional categories.

in LAC (0.27◦C , Table 4). Moreover, the increase in maximum temperature tends to be the

largest compared to average and minimum temperature, except for SEAS and SSAF, where

the minimum temperature increases the most (refer to Table 4). Diurnal temperature range

measures the difference between maximum and minimum temperature. A positive trend of

diurnal temperature range shows the maximum temperature increases faster than minimum

temperature, probably indicating the occurrence of heat stress or cold stress. WEOFF and EECA

show a substantial rise of diurnal temperature range, on the other side, slightly decreasing

trends are observed in SEAS and SSAF.
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Precipitation trends vary largely across and within regions. On a regional level, an increase

of precipitation is observed in EECA, SEAS, SSAF, and WEOFF (Table 4). The largest regional

average increase is observed in SEAS; with an average increase of growing season mean

precipitation of 6.77 mm over the past forty years, and the smallest increase of precipitation is

found in WEOFF, with an average increase of 0.36 mm. LAC countries have large variability of

precipitation trends within the region; dryer countries get more precipitation, and wet countries

get less precipitation. The largest decrease in precipitation is observed in Nicaragua (NIC), with

a decrease of 27.99 mm; on the other hand, an increase precipitation of 13.50 mm is observed

in Peru (PER). On a global level, growing season average temperature and precipitation have

increased by 0.56◦C and 1.96 mm from 1980-1999 to 2000-2018, and global soybean yields

have increase by 22% over the same period.

If treating all countries as a homogeneous group, panel (a)-(c) manifest no obvious patterns

of temperature indices vs. yield growth rates; while panel (d) shows likely positive correlation

between precipitation and yield growth, that is, in general, higher levels of annual growing

season average precipitation tend to associate with higher rates of crop yields. However, if

looking at individual regions separately, temperature levels could be related to crop yield growth

for certain regions, such as SEAS, MENA, and LAC. For example, MENA (purple points) shows

a clear negative correlation of average temperature and yield growth (panel (a)), that is, an

increase of average temperature is detrimental to soybean yields. The hottest country in MENA,

Iraq, which is actually also the hottest in the world, shows a substantial decrease of soybean

yields. In contrast to Turkey, the coldest country in MENA, shows the most positive growth of

soybean yields.

Disregarding the two outliers of China and Nepal, SEAS countries tend to have average

temperature ranging from 20 to 27.5 ◦C . China and Nepal show relatively low level of

temperature in soybean production areas. More than 50% soybean production in China is from

Northeast China, where the temperature is relatively low than the South Asia countries. SEAS

indicates a possible nonlinear relationship. Before reaching an optimum average temperature,

an increase in temperature levels leads to an increase in crop yields (see the points moving

from Japan, South Korea, to Myanmar and Laos); above an optimum average temperature, an

continual increase results in a reduction of crop yields (see countries with average temperature

above 25◦C).

Panel (d) reveals a large spread of precipitation levels in LAC, indicating no relationship

between precipitation levels and crop yield growth in this region. SEAS, on the contrary,

shows a potential positive relationship between precipitation levels and yield growth. In

summary, we observe pronounced regional difference in relationships between yield growth
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and climate variable variations; therefore, it is of essential importance to take into account

regional heterogeneity in the estimation of response functions of crop yields.

Table 4 Descriptive statistics of changes of average climate variables from period 1980-1999 to 2000-
2019. The mean statistics shows the average level of changes of climate variables within a region. The
standard deviation statistics shows the variability of changes of climate variables within a region.

Region Statistics
tmp tmx tmn dtr precip Yield Growth
[◦C] [◦C] [◦C] [◦C] [mm]

EECA mean 0.969 1.107 0.832 0.275 2.590 0.389
std 0.213 0.296 0.227 0.311 3.170 0.257

LAC mean 0.267 0.313 0.221 0.092 −2.282 0.095
std 0.225 0.317 0.170 0.236 10.216 0.188

MENA mean 1.018 1.041 0.997 0.043 −0.277 0.212
std 0.042 0.079 0.053 0.104 1.402 0.478

SEAS mean 0.411 0.321 0.501 −0.180 6.768 0.344
std 0.205 0.239 0.210 0.182 10.089 0.230

SSAF mean 0.455 0.412 0.499 −0.087 3.098 0.150
std 0.256 0.243 0.282 0.120 14.247 0.558

WEOFF mean 0.706 0.857 0.556 0.301 0.361 0.117
std 0.194 0.283 0.176 0.268 4.889 0.140

Global mean 0.560 0.590 0.531 0.060 1.957 0.220
std 0.340 0.421 0.305 0.282 9.568 0.326

Variable definition: tmp: average temperature; tmx: maximum temperature; tmn: minimum temperature;
dtr: diurnal temperature range; precip: precipitation.

3.2 Panel Results

Response function

Table 5 examines the regression estimates under various model specifications. Column

(1) presents results from estimating Eqn. (1) for climate response under a homogeneous

assumption across all countries. The global response function reveals soybean yield growth as

a upward open quadratic function of temperature. Controlling for precipitation, an increase of

temperature is increasingly damaging to crop yield growth until reaching a global optimum

growing season temperature (24.90◦C); above the optimum temperature the damage from a

further increase of temperature is actually attenuated (as shown in Figure 3). One possible

explanation for the diminishing negative effect of temperature increasing after a certain point

could be that crop varieties at hot areas have adapted to local climate and are thereby more

resilient to warming. The response function to precipitation is a parabola open downward.
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Fixing temperature, a dry country will benefit if it gets more precipitation until an optimal

precipitation level; beyond that it is harmful to have more precipitation for a country with large

amount of rain to begin with.

Fig. 3 Global response surface under homogeneous assumption across all countries. Model controls
country fixed effects, year fixed effects, times trends, and diurnal temperature range.

In column (2) we interact temperature with regional dummies. The coefficients of

temperature and temperature squared represent response of the reference level, SEAS. We

observe SEAS reacts strikingly different from the global homogeneous model; the signs of

temperature and temperature squared are both reversed, showing a downward open quadratic

response function. It indicates a warming in SEAS is increasingly beneficial before reaching an

optimal temperature (25.00◦C), after which the effects are mitigated and gradually becoming

harmful as temperature increases. The coefficients on the interaction terms indicate the

difference in response between SEAS and other regions. The interaction terms are statistically

significant for MENA and LAC. To examine the magnitude of regional difference, we aggregate

the reference response with that of the interaction terms and show the results in Table 6

column (2). MENA and LAC have significantly positive coefficients on temperature squared,

indicating an upward open curve response function which coincides with the global temperature

response function in Table 5 column (1). However, there are many regions that can not be

represented universally by the global response function. For example, SEAS has the opposite
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temperature–crop yield relationship; moreover, temperature is not even a significant factor to

soybean yield variation in SSAF, EECA, and WEOFF.

Column (3) adds regional heterogeneity to precipitation. The regional difference of response

in precipitation is significant as well. The soybean yields in SEAS, SSAF, and EECA show

responsiveness to precipitation variation, while MENA, LAC, and WEOFF are insensitive to

change in precipitation. Regional difference of precipitation response is not as contrasting as

for temperature. Regional response function from column (3) and global response function

from column (1) and (2) all show a downward open curve relationship between soybean yields

and precipitation. The optimal precipitation in SEAS is 179 mm, above which level, an increase

in precipitation will lead to an adverse effect to crop yields. Most countries in SEAS have

precipitation level above 179 mm, indicating a negative effect on crop yields if countries get

wetter. According to Figure 2, China, Pakistan, and Sri Lanka have lower levels of precipitation

than the optimum level in SEAS, therefore they will benefit with more precipitation. However,

China and Pakistan get dryer over the past forty years, indicating a detrimental effect on crop

yields. Since China is colder than the optimal temperature in SEAS, historical warming has

been beneficial to crop yield growth. Therefore, the negative effects of precipitation can be

mitigated by the effects of temperature change in China. On the other hand, given the warm

climate in Pakistan (above 25◦C), local soybean yields have experienced a double whammy

from historical precipitation and temperature trends.

SSAF shows an optimal precipitation of 404 mm, which is far larger than usual values in

the region (Figure 2 shows all MENA countries have average precipitation levels lower than 50

mm). Since it is unlikely that precipitations in MENA will jump from below 50 to above 404

mm, it is not a concern for MENA countries to experience a change of precipitation effects from

positive to negative. In other words, local soybean yields will keep benefiting if precipitation

increases in a foreseeable future. EECA has a linear positive relationship between precipitation

and crop yields. An extra 10 mm of growing season average precipitation is associated with a

7.155 percentage points higher growth rate in EECA countries.

Column (4) examines whether rich and poor countries react differently by interacting climate

variables with a wealth dummy. A country is defined as poor if it has below than median level

of PPP-adjusted GDP per capita across all countries. The coefficients of the interaction terms

between climate and the poor dummy are statistically insignificant, meaning that there is no

significant difference in sensitivities to climate change for rich and poor countries. Table 6

column (4)-rich and column (4)-poor show the response estimates are indeed very similar for

rich (reference level) and poor countries. Compared to poor countries, rich countries in SEAS

have more concave responses to changes in temperature and precipitation (larger absolute

14



values for the quadratic terms), with lower levels of optimal temperature and precipitation

(23.42 ◦C vs. 25.07◦C , 175 mm vs. 187 mm). Figure 4 (a) shows the response surface under

homogeneous response assumption for rich and poor countries. Panel (b) and (c) show the

response surfaces for rich and poor countries, respectively. However, the difference between

poor and rich countries in SEAS is not necessarily applicable across all regions. For instance,

poor countries in MENA and LAC have more convex temperature response function and lower

optimal temperature values, suggesting that rich countries are less affected by temperature

fluctuations (Figure 5).

Column (5) and (6) are lagged dependent variable models, which add 1 lag and 3 lags of

log difference of soybean yields based on the model with regional heterogeneity, i.e., model (3).

The parameter estimates are comparable to model (3), showing stability and robustness of the

baseline model.
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Table 5 Regression estimate results

(1) (2) (3) (4) (5) (6)

Temperature -0.1396∗∗∗ 0.2282∗∗ 0.2275∗∗ 0.2587∗∗ 0.3017∗∗ 0.3581∗∗
(0.0493) (0.1156) (0.1100) (0.1174) (0.1181) (0.1469)

Temp. interacted with regions
MENA -0.3970∗∗∗ -0.4465∗∗∗ -0.4556∗∗∗ -0.2335∗ -0.2237

(0.1194) (0.1330) (0.1280) (0.1405) (0.1873)
LAC -0.8169∗∗∗ -0.8066∗∗∗ -0.8403∗∗∗ -0.7197∗∗∗ -0.8164∗∗∗

(0.1666) (0.1641) (0.1756) (0.2168) (0.2628)
SSAF -0.3460 -0.3633 -0.3897∗ -0.3588 -0.2748

(0.2282) (0.2247) (0.2317) (0.2290) (0.2576)
EECA -0.4906 -0.4431 -0.4561 -0.6013∗ -0.5802

(0.3331) (0.3289) (0.3329) (0.3339) (0.3803)
WEOFF -0.1513 -0.1387 -0.1721 -0.1606 -0.2251

(0.1478) (0.1422) (0.1487) (0.1440) (0.1662)
Temp. interacted with wealth indicator

Poor country dummy -0.0145
(0.0102)

Temperature sq. 0.0028∗∗ -0.0046∗∗ -0.0047∗∗ -0.0055∗∗ -0.0066∗∗∗ -0.0081∗∗∗
(0.0011) (0.0023) (0.0022) (0.0024) (0.0024) (0.0031)

Temp. sq. interacted with regions
MENA 0.0076∗∗∗ 0.0087∗∗∗ 0.0090∗∗∗ 0.0050∗ 0.0050

(0.0024) (0.0026) (0.0025) (0.0028) (0.0038)
LAC 0.0167∗∗∗ 0.0165∗∗∗ 0.0173∗∗∗ 0.0147∗∗∗ 0.0166∗∗∗

(0.0034) (0.0033) (0.0036) (0.0045) (0.0056)
SSAF 0.0076 0.0082∗ 0.0086∗ 0.0076 0.0064

(0.0050) (0.0050) (0.0051) (0.0050) (0.0057)
EECA 0.0101 0.0097 0.0099 0.0147 0.0139

(0.0092) (0.0090) (0.0092) (0.0089) (0.0102)
WEOFF 0.0010 0.0007 0.0016 0.0017 0.0036

(0.0037) (0.0036) (0.0038) (0.0037) (0.0041)
Temp. sq. interacted with wealth indicator

Poor country dummy 0.0007
(0.0005)

Precipitation 1.6629∗∗∗ 1.6703∗∗∗ 1.3111∗∗ 1.5153 1.2890∗ 1.0296
(0.5668) (0.5213) (0.6072) (1.061) (0.7461) (0.7697)

Precip. interacted with regions
MENA 4.0069 0.8183 9.7328 10.7248

(4.9513) (9.1777) (8.0117) (8.3110)
LAC -0.2644 -0.2580 -0.8283 -0.5237

(1.0587) (1.0548) (1.1012) (1.1784)
SSAF 0.5867 0.5833 0.5003 0.8150

(0.9008) (0.9030) (1.1094) (1.2708)
EECA 5.8439 5.5994 6.6400∗ 7.0146∗∗

(3.9724) (3.9199) (3.5694) (3.4804)
WEOFF -1.6633 -1.8245 -0.9620 0.7118

(1.7000) (1.9023) (2.1682) (1.6807)
Precip. interacted with wealth indicator

Poor country dummy -0.1657
(0.9601)

Precipitation sq. -3.9417∗∗∗ -3.7974∗∗∗ -3.6635∗∗∗ -4.3351∗∗ -3.3159∗∗ -2.8125∗∗
(1.0455) (0.9806) (1.0798) (2.2008) (1.3563) (1.3507)

Precip. sq. interacted with regions
MENA -105.5973 -52.3802 -140.3026 -188.8467

(83.6933) (155.9143) (134.3376) (136.4317)
LAC 1.0621 1.0413 2.0815 1.8493

(1.9643) (1.9961) (2.0239) (2.1264)
SSAF 1.3133 1.1965 1.2448 0.6111

(1.5034) (1.5186) (1.9045) (2.1070)
EECA -17.5161 -16.3583 -12.7286 -16.7581

(14.8302) (14.6370) (14.1649) (13.6104)
WEOFF 9.7483 10.2720 6.8844 1.6497

(7.4054) (7.7373) (8.9362) (7.0024)
Precip. sq. interacted with wealth indicator

Poor country dummy 0.7356
(2.1986)

Diurnal temperature range -0.0482∗∗∗ -0.0445∗∗∗ -0.0418∗∗∗ -0.0409∗∗∗ -0.0341∗∗ -0.0324∗∗
(0.0147) (0.0146) (0.0141) (0.0143) (0.0134) (0.0141)

Observations 2844 2844 2844 2844 2690 2454

R squared 0.2 0.21 0.22 0.22 0.23 0.23

All models include country fixed effects, year fixed effects, and quadratic time trends. Temperature is measured in ◦C and precipitation in metres,
expressed as average values on growing seasons of soybeans. Dependent variable is log difference of crop yields. Columns: (1) homogeneous
specification as baseline regression, (2) baseline plus regional heterogeneity for temperature, (3) baseline plus regional heterogeneity for temperature
and precipitation, (4) as in column 3 but adding wealth heterogeneity, (5) as in column 3 but adding 1 lag of dependent variable, (6) as in column 3
but adding 3 lags of dependent variable. Asterisks indicate significance at 1%(***), 5%(**), and 10%(*).
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Table 6 Climate Effects based on regional heterogeneity.

Region Term (2) (3) (4)-rich (4)-poor

SEAS Temp. 0.2282∗∗ 0.2275∗∗ 0.2587∗∗∗ 0.2442∗∗
(0.1156) (0.1100) (0.1174) (0.1136)

Temp. sq. -0.0046∗∗ -0.0047∗∗ -0.0055∗∗ -0.0049∗∗
(0.0023) (0.0022) (0.0024) (0.0023)

Optimal Temp. 25.00 24.23 23.42 25.07
Precip. 1.3111∗∗ 1.5153 1.3497∗∗

(0.6072) (1.0610) (0.5977)
Precip. sq. -3.6635∗∗∗ -4.3351∗∗ -3.5995∗∗∗

(1.0798) (2.2008) (1.0658)
Optimal Precip. 0.179 0.175 0.187

MENA Temp. -0.1688∗∗∗ -0.219∗∗∗ -0.1969∗∗∗ -0.2114∗∗∗
(0.0397) (0.0690) (0.0712) (0.0666)

Temp. sq. 0.0031∗∗∗ 0.0041∗∗∗ 0.0034 ∗∗ 0.0041∗∗∗
(0.0008) (0.0013) (0.0015) (0.0012)

Optimal Temp. 27.41 27.03 28.68 25.86
Precip. 5.3181 2.3336 2.1679

(4.9771) (8.7574) (9.3176)
Precip. sq. -109.2607 -56.7152 -55.9796

(83.7818) (155.1197) (156.2028)

LAC Temp. -0.5887∗∗∗ -0.5791∗∗∗ -0.5816∗∗∗ -0.5961∗∗∗
(0.1199) (0.1192) (0.1196) (0.1201)

Temp. sq. 0.0121∗∗∗ 0.0118∗∗∗ 0.0117∗∗∗ 0.0124∗∗∗
(0.0024) (0.0024) (0.0024) (0.0024)

Optimal Temp. 24.34 24.52 24.79 24.07
Precip. 1.0467 1.2573 1.0917

(0.8783) (1.3750) (0.8980)
Precip. sq. -2.6014 -3.2938 -2.5582

(1.6788) (3.0679) (1.6303)

SSAF Temp. -0.1178 -0.1359 -0.131 -0.1455
(0.1972) (0.1965) (0.2034) (0.2027)

Temp. sq. 0.003 0.0035 0.0031 0.0037
(0.0045) (0.0045) (0.0047) (0.0046)

Precip. 1.8978∗∗∗ 2.0986∗ 1.9329∗∗∗
(0.6632) (1.1778) (0.6699)

Precip. sq. -2.3501∗∗ -3.1385 -2.403∗∗∗
(1.0303) (2.4787) (1.0416)

Optimal Precip. 0.404 0.334 0.402

EECA Temp. -0.2624 -0.2156 -0.1974 -0.2119
(0.3134) (0.3114) (0.3192) (0.3187)

Temp. sq. 0.0055 0.005 0.0044 0.0051
(0.0089) (0.0088) (0.0090) (0.0090)

Precip. 7.155∗ 7.1148∗ 6.9491∗
(3.9246) (3.9782) (3.8500)

Precip. sq. -21.1796 -20.6933 -19.9577
(14.7866) (14.8264) (14.5611)

WEOFF Temp. 0.0769 0.0887 0.0866 0.0721
(0.0869) (0.0859) (0.0857) (0.0862)

Temp. sq. -0.0036 -0.004 -0.0039 -0.0033
(0.0027) (0.0027) (0.0027) (0.0028)

Precip. -0.3521 -0.3092 -0.4749
(1.5970) (1.6027) (1.8406)

Precip. sq. 6.0849 5.937 6.6725
(7.3048) (7.3347) (7.7207)

This table aggregates climate-region and climate-wealth interaction terms based on model
specifications in Table 5. Temperature is measured in ◦C and precipitation in metres, ex-
pressed as average values on growing seasons of soybeans. Asterisks indicate significance
at 1%(***), 5%(**), and 10%(*).
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Fig. 4 Regional response surface for SEAS. (a) is obtained from Table 6 model (3), (b) is obtained from
model (4).rich, (c) is obtained from model (4).poor.

Fig. 5 Regional response surface for MENA. (a) is obtained from Table 6 model (3), (b) is obtained from
model (4).rich, (c) is obtained from model (4).poor.

Marginal Effects

We examine here the marginal effects, that is estimating the change of crop yields from one

unit’s increase of climate variables. Based on alternative model robustness check in the previous

section, model (3) shows largely stability and robustness. We therefore focus on model (3) in

the following analysis. Given a linear specification of diurnal temperature range, its marginal

effect is just the coefficient on the variable. On a global level, a one degree’s increase of diurnal

temperature change will result in a reduction of soybean yield growth by 4.16 percentage points

(the last row of Table 5). In other words, if the maximum temperature increases faster than the

minimum temperature, it will be significantly detrimental to soybean growth; conversely, i.e.,

maximum temperature increases at a slower rate, the negative effects from the rise of average

temperature will be elevated.
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On the other hand, we have non-linear specifications for temperature and precipitation,

which means the marginal effects are a function of the climate variables. In particular the

marginal effect for SEAS (the reference level) at some temperature T ∗ is β1 + 2β2T ∗. The

marginal effects of other regions will need to aggregate the coefficients of the reference level

with those of the regional interaction terms. For example, the marginal effect at temperature

T ∗ for MENA is β1 + β1,M ENA+ 2(β2 + β2,M ENA)T ∗. The same principle applies to precipitation.

Figure 6 displays the effects of 1◦C warming, using model (3). Transparent countries are not

producing soybeans. White color mean the temperature is not a significant factor to soybean

production in the countries. According to the result in Table 6, countries in SSAF, EECA, and

WEOFF are not affected by temperature and thereby shown in white in the map. SEAS, except

China, is estimated to be negatively affected by the warming. Actually, China will benefit the

most given an increasing of temperature. LAC countries differ in the responses of warming. In

particular, Brazil, Paraguay, and Mexico will benefit from warming, while Columbia, Peru, Chile,

and Argentina will be adversely affected by a rise of temperature.

Fig. 6 Marginal effects of additional 1◦C warming during growing season on soybean yields. Base
temperature is the mean of the period 1961-2018 for each country. Note that the marginal effect is
applied to annual growth rates. For example, a marginal effect of −0.02 means that a country growing
at 3% yr−1 is projected to increase at 1% yr−1 with 1 ◦C warming compared to the base period.

Figure 7 shows the marginal effects resulting from an increase of growing season average

monthly precipitation of 10 mm. We see that all countries in EECA and SSAF will benefit from

additional precipitation, among which, EECA countries will benefit the most if they get wetter in

the future. SEAS countries have various responses from extra precipitation—China and Pakistan

will benefit, and Pacific island countries will be harmed.
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Fig. 7 Marginal effects of a 10mm increase of growing season average precipitation on soybean yields.
Base precipitation is the mean of the period 1961-2018 for each country.

4 Discussion

This paper investigates how climate change affects soybean yields based on a panel data

analysis over the period 1961-2018. We show non-linear effects of temperature and precipitation

on crop yields, and a negative linear relationship for diurnal temperature range (dtr is the

difference between maximum temperature and minimum temperature). The effects of diurnal

temperature range are straightforward. On a global level an increase of 1◦C in diurnal

temperature range will reduce annual soybean yield growth by 4.1 percentage points. An

increase in diurnal temperature could imply the occurrences of heat stress, where maximum

temperature has increased considerably and the increment of which is larger than the rise in

minimum temperature. Alternatively, the occurrences of cold stress could result in an increase

of diurnal temperature as well, where minimum temperature has decreased significantly.

This paper examines the heterogeneous responses of soybean yields to changes in tempera-

ture and precipitation from two aspects: regional heterogeneity and wealth heterogeneity. We

show that a global response function under a homogeneous assumption is not sophisticated

enough to capture each region’s distinct response to climate change because regions might have

highly contrasting responses to climate change. For instance, the temperature response function

in Southeast Asia is an downward open parabola and of opposite direction with that of Middle

East & North Africa and Latin America. The heterogeneity among regions makes it impossible

to have one global response function that is representative of all regions. We therefore incorpo-
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rate regional heterogeneous parameters in our model and generate a region-specific response

function for each region.

Our regional response functions show (1) Soybean yields in Southeast Asia (SEAS) are

responsive to both temperature and precipitation variations. The response function of

temperature is a downward open curve; before reaching an optimal growing season average

temperature of 25.00◦C , an increase of temperature is increasingly beneficial to yield growth.

Above the optimal level, a continual increase of temperature is less helpful to yield growth

and can be even detrimental when the temperature reaches a very high level. Response

function of precipitation is also a downward open curve with an optimal value of 179 mm. (2)

Soybean yields in Middle East & North Africa countries (MENA) are only sensitive to changes in

temperature. Its response function is an upward open quadratic curve with an optimal value

of 27.03◦C . It shows the damage reaches the highest at 27.03◦C; above that, an continual

warming is less harmful, probably due to the adaption of local soybean variety. Precipitation is

not a significant factor to soybean growth in MENA. One possible explanation could be local

agriculture is dependent on irrigation technology rather than on natural precipitation which is

too low to afford the amount required for crop growing. (3) Soybean yields in Latin American

countries (LAC) have similar response as MENA, with an upward open quadratic response

function to temperature and are insensitive to changes in precipitation. (4) Soybean yields in

Sub-Saharan Africa (SSAF) and Eastern Europe & Central Asia (EECA) are only responsive to

changes in precipitation. SSAF shows an upward open curve with an optimal growing season

precipitation level of 404 mm which is far greater than the common level of precipitation in the

region. Therefore, an increase of precipitation will be continually beneficial before the optimum.

EECA has a positive linear relationship between precipitation and crop yields. (5) Western

Europe & Off Shores (WEOFF) shows non-significance to either temperature or precipitation.

At last, we explored wealth heterogeneity in our model, which shows statistically

indistinguishable difference in the shape of response function between rich and poor countries.

We suggest that the difference in the responses between rich and poor countries is determined

by their different initial values of temperature and precipitation.

The current paper investigates the regional heterogeneity in the effects of climate change

on soybean yields. We highlight that crop sensitivities to climate change are highly different,

which means a global response function cannot reliably predict responses at a regional level. By

interacting climate variables with regional dummies, we constructs regional response functions

which are able to capture local climate-agriculture dynamics. However, theses regional models

should be applied with caution. For example, they are calibrated in a setting of normal climate

situations in individual regions, therefore, they cannot be used to simulate future yield responses
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for ranges far exceeding the “normal” status. Nonetheless, this study evaluates responses of crop

yields to climate change on a regional scale and provides insight to region-specific adaptation

strategies to ensure food security for a growing population. One of the extensions of this study

could be crop yield projection under simulated climate pathways.
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