Distribution
Standard Normal Distribution
Normal Distribution $\mathcal{N}(\mu, \sigma^2)$. The 2nd parameter is the variance. Normal distribution is also called the Gaussian distribution.
$\phi(.)$ usually denotes the probability density function of the standard normal (standard Gaussian) distribution.
$\Phi(.)$ usually the cumulative distribution function of the standard normal.
If $z\sim N(0,1)$, then its pdf, $\phi(.)$, is given by:
\[\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}.\]The cdf, $\Phi$, is given by:
\[\Phi(x) = P(Z\le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp\{-\frac{u^2}{2}\} du.\]Figure 1 shows the $\Phi$ and $\phi$ functions.
Normal Distribution
If $Z$ is standard normal and $X=\mu+\sigma Z$, then $X\sim N(\mu, \sigma^2)$.
To find the cdf of $X$, we can write
\[\begin{aligned} F_X(x) &= P(X\le x) \\ &= P( \sigma Z+\mu \leq x) \hspace{20pt} \big(\textrm{where }Z \sim N(0,1)\big) \\ &= P\left(Z \leq \frac{x-\mu}{\sigma}\right) \\ &= \Phi\left(\frac{x-\mu}{\sigma}\right). \end{aligned}\]To find the pdf, we can take the derivative of $F_X$,
\[\begin{aligned} f_X(x) &= \frac{d}{dx} F_X(x) \\ & =\frac{d}{dx} \Phi\left(\frac{x-\mu}{\sigma}\right) \\ & = \frac{1}{\sigma} \Phi'\left(\frac{x-\mu}{\sigma}\right) \hspace{20pt} \textrm{(chain rule for derivative)} \\ &= \frac{1}{\sigma} f_Z\left(\frac{x-\mu}{\sigma}\right) \\ &= \frac{1}{\sqrt{2 \pi\sigma^2} } \exp\left \{-\frac{1}{2}\left(\frac{x-\mu}{\sigma^2}\right)^2 \right\}. \end{aligned}\]Derivative Distributions from $N(0,1)$
The $n\times 1$ random vector $z \sim N(0,I)$, where $I$ is an $n\times n$ identity matrix, is called a standard normal vector, with elements $z_i \sim N(0,1)$ for $i=1,2,\ldots,n$ that are independent standard normal random variables.
- Chi-squared distribution. The scalar $w=z'z=\sum_{i=1}^n z_i^2 \sim \chi^2(n)$.
The sum of squares of $n$ independent standard normal random variables has chi-squared distribution with $n$ degress of freedom. - F-distibution. If the random variables $w_1 \sim \chi^2(m)$ and $w_2 \sim \chi^2(n)$ and $w_1$ and $w_2$ are independent, then the scalar
$$
v=\frac{w_1/m}{w_2/n} \sim F(m,n)
$$
The ratio of two independent chi-squared random variables, each divided by their respective degrees of freedom, has a F-distibution.
Theorem If $v \sim F(m,n)$, the limiting distribution of $mv$ as $n\to\infty$ is the $\chi^2(m)$.Proof: $$ mv = \frac{w_1}{w_2/n} \sim F(m,n) $$ Since $w_2$ is a $\chi^2$ variable with $n$ degrees of freedom, it can be written as the sum of $n$ iid $\chi^2(1)$, the denominator can be written as $$ w_2/n = \frac{Y_1+Y_2+\cdots+Y_{n}}{n} $$ with $Y_1,Y_2,\ldots,Y_{n}$ mutually independent $\chi^2(1)$. By the Strong Law of Large Numers, $$ w_2/n = \frac{Y_1+Y_2+\cdots+Y_{n}}{n} \xrightarrow{a.s} \text{E}(Y_1) \quad \text{as } n\to\infty $$ and $\text{E}(Y_1)=1$, which means $$ mv = \frac{w_1}{w_2/n} \xrightarrow{a.s} w_1 \quad \text{as } n\to\infty $$proving the desired result. $\square$
- Student t-distribution. If the random variable $z\sim N(0,1)$ and $w\sim \chi^2(n)$ are independent, then the scalar
$$
u=\frac{z}{\sqrt{w/n}} \sim t(n)
$$
The ratio of a standard normal random variable to the square root of an independent chi-squared random variable divided by its degrees of freedom has a Student t-distribution with that degrees of freedom.
$$ u^2 = \frac{z}{w/n}= \frac{z/1}{w/n} \sim F(1,n) $$ The square of a RV with a $t(n)$ distribution has a $F(1,n)$ distribution.
$t$-distribution approximates standard normal in the limit. In practice, at a degree of freedom of 30, the $t$-distribution is regarded as closely enough to the standard normal distribution.
For example, $t_{0.975}(20)=2.086$, $t_{0.975}(40)=2.031$, $t_{0.975}(100)=1.984$. As $df=n-K$ increases, $c_{0.025}(n-K)$ approaches 1.96 from above (as $t$-distribution has fatter tails).
That means, in very large samples, we could use the 97.5% percentile of standard normal distibution to obtain the 95% CI.
Two properties of quadratic forms of normally distributed random vectors:
- If the $n\times 1$ vector $y\sim N(\mu,\Sigma)$ and the scalar $w=(y-\mu)'\Sigma^{-1}(y-\mu)$, then $w\sim \chi^2(n)$.
- If the $n\times 1$ vector $z\sim N(0,I)$ and the non-stochastic $n\times n$ matrix $G$ is symmetric and idempotent with $\text{rank}(G)=r\le n$, then the scalar $w=z'Gz \sim \chi^2(r)$.
Application of property 2
Let $u=\sigma Z$, $u\vert X \sim N(0, \sigma^2I)$, $Z\vert X \sim N(0,I)$.
\[\hat{u} = My = M(X\beta+u) = Mu = M\sigma Z =\sigma Mz\] \[\hat{u}'\hat{u} = \sigma^2 z'M'Mz = \sigma^2 z'Mz\]Given that $\text{rank}(M)=n-k$,
\[z'Mz \sim \chi^2(n-K).\]Therefore
\[\frac{\hat{u}'\hat{u}}{\sigma^2} = z'Mz \sim \chi^2(n-K).\]F-test
The F-test is used to test joint restrictions.
\[\begin{align*} H_0: H\beta=\theta^0 \\ H_0: H\beta\neq\theta^0 \end{align*}\]$H$ is $p\times K$. $p$ is the number of restrictions.
We use the estimator $\hat{\theta}_{OLS} = H \hat{\beta}_{OLS}$ and construct the scalar test statistic
\[v=\left(\frac{1}{p}\right) (\hat{\theta}_{OLS}-\theta^0)' \left[\hat{\text{Var}}(\hat{\theta}_{OLS} \vert X)\right]^{-1} (\hat{\theta}_{OLS}-\theta^0)\]where $\hat{\text{Var}}(\hat{\theta}_{OLS} \vert X) = H\, \hat{\text{Var}}(\hat{\beta}_{OLS} \vert X)\,H’$.
If $H_0$ is true, we have
\[v\sim F(p, n-K).\]Goodness of fit
\[\begin{align*} R^2 &= \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2} = 1- \frac{\sum_{i=1}^n \hat{u}_i^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \\ &= \frac{ESS}{TSS} = 1-\frac{RSS}{TSS} \end{align*}\]provided $\bar{\hat{u}}=0$, i.e., the model has an intercept term.
When a model only contains the intercept, $R^2=0$.
Using $R^2$ to test exclusion restrictions
Denote $R_U^2$ to be the $R^2$ from the unrestricted model, $R_R^2$ to be from the restricted model.
\[v = \left(\frac{n-K}{p}\right) \left(\frac{R_U^2-R_R^2}{1-R_U^2}\right) \sim F(p, n-K)\]The null hypothesis is rejected if the exclusion of these $p$ explanatory variables results in a su¢ ciently large fall in the $R^2$ goodness of fit measure, or in a sufficiently large deterioration in the fit of the model.
This can be used to test the restriction that all $K-1$ of the slope coefficients in a linear model are equal to zero, i.e. to test the exclusion of all the explanatory variables except the intercept.
The restricted model $y_i=\beta_1+u_i$ has $R_R^2=0$.
The test statisti simplifies to
\[v = \left(\frac{n-K}{K-1}\right) \left(\frac{R^2}{1-R^2}\right) \sim F(K-1, n-K).\]This is sometimes referred to as the “F-test” for the model.
Families of Densities
Standard Normal: $Z \sim N(0,1)$
\[\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}\]Normal distribution $X \sim N(\mu,\sigma^2)$
\[f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}\]Multivariate normal random vecctors (MV-N)
MV-N is a linear transformation of a random vector whos entries are mutually independent univariate normal random variables.
Let $X$ be a $K\times 1$ continuous random vector with multivariate normal distribution with mean $\mu$ and covariance $\Sigma$, denoted $X\sim N(\mu, \Sigma)$.
\[X = \begin{bmatrix} X_1 \\ \vdots \\ X_K \end{bmatrix}\] \[\mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_K \end{bmatrix}\] \[\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots &\\ 0 & 0 & \cdots & \sigma_K^2 \\ \end{bmatrix}\]In other words, covariance matrix $\Sigma$ is diagonal. In the case of standard MV-N, each $X_k$ is standard normal, the covariance matrix will be an identity matrix of order $K$.
Its joint probability density function is
\[f_X(x) = (2\pi)^{-\frac{K}{2}} \vert \text{det}(\Sigma) \vert ^{-\frac{1}{2}} \exp \left ( -\frac{1}{2} (X-\mu)'\Sigma^{-1}(X-\mu) \right )\]The $K$ random variables $X_1, \ldots, X_K$ constituting the vector $X$ are said to be jointly normal.
Distribution Tables
Discrete Distributions
Distribution of $X$ | $f(x)$ | Support | $E[X]$ | $\text{Var}[X]$ |
---|---|---|---|---|
Hypergeometric$(n, N_1, N_0)$ | $\displaystyle \frac{\binom{N_1}{x} \binom{N_0}{n-x}}{\binom{N}{n}}$ | $x=0, 1, \ldots, n$ | $n \frac{N_1}{N}$ | $n \frac{N_1}{N} \frac{N_0}{N} \left(1 - \frac{n-1}{N-1}\right)$ |
Binomial$(n, N_1, N_0)$ | $\displaystyle \frac{\binom{n}{x} N_1^x N_0^{n-x}}{N^n}$ | $x=0, 1, \ldots, n$ | $n \frac{N_1}{N}$ | $n \frac{N_1}{N} \frac{N_0}{N}$ |
Binomial$(n, p)$ | $\binom{n}{x} p^x (1-p)^{n-x}$ | $x=0, 1, \ldots, n$ | $np$ | $np(1-p)$ |
Geometric$(p)$ | $(1-p)^{x-1} p$ | $x=1, 2, \ldots$ | $\frac{1}{p}$ | $\frac{1-p}{p^2}$ |
NegativeBinomial$(r, p)$ | $\binom{x-1}{r-1} (1-p)^{x-r} p^r$ | $x=r, r+1, \ldots$ | $\frac{r}{p}$ | $\frac{r(1-p)}{p^2}$ |
Poisson$(\mu)$ | $e^{-\mu} \frac{\mu^x}{x!}$ | $x=0, 1, 2, \ldots$ | $\mu$ | $\mu$ |
Continuous Distributions
Distribution of $X$ | $f(x)$ | Support | $E[X]$ | $\text{Var}[X]$ |
---|---|---|---|---|
Uniform$(a, b)$ | $\frac{1}{b-a}$ | $a < x < b$ | $\frac{a+b}{2}$ | $\frac{(b-a)^2}{12}$ |
Exponential$(\lambda)$ | $\lambda e^{-\lambda x}$ | $0 < x < \infty$ | $\frac{1}{\lambda}$ | $\frac{1}{\lambda^2}$ |
Gamma$(r, \lambda)$ | $\frac{\lambda^r}{(r-1)!}x^{r-1} e^{-\lambda x}$ | $0 < x < \infty$ | $\frac{r}{\lambda}$ | $\frac{r}{\lambda^2}$ |
Normal$(\mu, \sigma)$ | $\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}$ | $-\infty < x < \infty$ | $\mu$ | $\sigma^2$ |
Chi-square$(n)$ | $c\, x^{n/2-1} e^{-\frac{1}{2}x}$[1] | $0<x<\infty$ | $n$ | $2n$ |
[1] $c$ is a constant, $c=\frac{1}{2^{n/2}\Gamma(n/2)}$. $\Gamma()$ is the Gamma function.
References:
- Distribution tables source: https://dlsun.github.io/probability/distribution-table.html